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Groups

Definition (Group)

A group is a set G together with a binary operation · such that the
following axioms hold:

a · b ∈ G for all a, b ∈ G (closure)

a · (b · c) = (a · b) · c for all a, b, c ∈ G (associativity)

∃e ∈ G such that for all a ∈ G , a · e = e · a = a (identity)

for each a ∈ G , ∃a−1 ∈ G such that a · a−1 = a−1 · a = e (inverse)

Usually a · b is written simply as ab.

In particular they can be functions under function composition

group in which every element equals power of a single element is
called a cylic group

Ex. Z is a group under normal addition. The identity is 0 and the
inverse of a is −a. Group is cyclic with generator 1
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Group Actions

Definition (Group Action)

Given a set X and a group G , a group action is a function φ : G × X → X
satisfying the following axioms:

φ(e, x) = x (identity)

φ(g , φ(h, x)) = φ(gh, x) (compatibility/associativity)

Confusingly, φ(g , x) is usually abbreviated as g · x or gx , which is the
same notation as for group elements.

A group G acting on a set X is written G y X .

In some cases the action of G on X is fairly obvious. Ex. If G = Sn
acts on X = {1, 2, . . . , n} then the action is seen to be permutations
on n elements.
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Orbits

Definition (Orbit)

Let G be a group acting on X . The orbit of x ∈ X is the set
{gx | g ∈ G}. In other words, the orbit of x is the set of elements of X
which can be obtained by composing x with various elements of G .

orbit of x denoted OrbG (x)

orbits of X under the action of G form a partition of X

Ex. Under the trivial action gx = x , the orbit of any element is itself
in a set

Ex. Under the permutation action G = Sn and X = {1, 2, . . . , n}, the
only orbit is the entire set

Set of orbits of X under the action of G is denoted X/G , the
quotient of the action
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Burnside’s Lemma

Burnside’s Lemma

Suppose G y X , and let X g = {x ∈ X | gx = x}. In other words, X g

represents the set of elements in X fixed by g . Then

|X/G | =
1

|G |
∑
g∈G
|X g |.

This gives a formula for the number of orbits of X under the action of
G

|X/G | represents the number of ”distinct elements” of X under the
action of G

Sebastian Zhu, Vincent Fan (MIT PRIMES) Polya Enumeration Thorem December 7th, 2018 5 / 14



Burnside’s Lemma

Burnside’s Lemma

Suppose G y X , and let X g = {x ∈ X | gx = x}. In other words, X g

represents the set of elements in X fixed by g . Then

|X/G | =
1

|G |
∑
g∈G
|X g |.

This gives a formula for the number of orbits of X under the action of
G

|X/G | represents the number of ”distinct elements” of X under the
action of G

Sebastian Zhu, Vincent Fan (MIT PRIMES) Polya Enumeration Thorem December 7th, 2018 5 / 14



Burnside’s Lemma

Burnside’s Lemma

Suppose G y X , and let X g = {x ∈ X | gx = x}. In other words, X g

represents the set of elements in X fixed by g . Then

|X/G | =
1

|G |
∑
g∈G
|X g |.

This gives a formula for the number of orbits of X under the action of
G

|X/G | represents the number of ”distinct elements” of X under the
action of G

Sebastian Zhu, Vincent Fan (MIT PRIMES) Polya Enumeration Thorem December 7th, 2018 5 / 14



Application of Burnside

Consider distinct rings of 8 beads colored with 4 colors, up to rotation.

Define a group action G y X so that gx is the rotation of the ring x by
the element g .
The orbits of this action represent distinct rings under rotation.
We must therefore count |X/G |. By Burnside’s Lemma we find the
numbers of elements of X fixed by each g ∈ G .
The result is

|X/G | =
1

|G |
∑
g∈G
|X g | =

1

8
(4096 + 4 + 16 + 4 + 256 + 4 + 16 + 4) = 550.
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Polya Enumeration Theorem

Polya Enumeration Theorem (Unweighted)

Let X be a set with group action induced by a permutation group G on X .
Let C be a set of colors on X , and let CX be the set of functions
f : X → C . Then

|CX/G | =
1

|G |
∑
g∈G
|C |c(g),

where c(g) is the number of cycles of g on X .

the functions f : X → C is really an assignment of colors to the
elements of X .

G must act on CX to make sense; if q is a coloring and g ∈ G then
g · q(x) = q(g−1x)

This is equivalent to Burnside’s lemma because |C |c(g) also counts
the number of points fixed by g . To be fixed, each element in a cycle
has to have the same color.
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Polya Enumeration Theorem

Problem

Count the number of graphs of 4 vertices up to isomorphism.

Can be done by brute force; however we present a different way to
solve the problem
can be visualized by colorings 2-element subsets of {1, 2, 3, 4}, colored
black if edge and white if no edge

Definition (Weight)

Suppose that the colors c ∈ C have weights w(c) ∈ Z+
0 . Define the

weight of a coloring q to be the sum of the weights of the colors used, or

w(q) =
∑
x∈X

w(q(x)).

weight of a coloring corresponds to number of edges; important for
construction of generating function on colorings
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Polya Enumeration Theorem

Definition (Cycle Index)

The cycle index of a permutation group G is defined as

ZG (t1, t2, . . . ) =
1

|G |
∑
g∈G

t
m1(g)
1 t

m2(g)
2 . . . ,

where mi (g) is the number of cycles of length i in the cycle decomposition
of g .

The group that acts on graphs with 6 edges is S4. By inspection, there is
1 element of S4 with 6 cycles of length 1, 9 elements with 2 one cycles
and 2 two cycles, 8 elements with 2 3 cycles, and six elements with a two
cycle and a four cycle. Therefore

ZS4(t1, t2, t3, t4) =
1

24
(t6

1 + 9t2
1 t

2
2 + 8t2

3 + 6t2t4).
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Polya Enumeration Theorem

Generating Function for a set of colors

The generating function for a set of colors is

f (t) = f0 + f1t + f2t
2 + . . . ,

where fi is the number of colors with weight i .

The generating function in the graph counting problem is therefore 1 + t.
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Polya Enumeration Theorem

Polya Enumeration Theorem (weighted)

The generating function of the number of colored arrangements by weight
is given by

F (t) = ZG (f (t), f (t2), . . . ).

Justification: we can show that∑
colorings fixed by g

tw(q) =
∏
i

f (t i )mi (g).

We can then show that summing the above quantity across all g ∈ G (and
dividing by |G |) is the same as F (t) = ZG (f (t), f (t2), . . . ) through some
easy but laborious bashing. Apply Burnside’s on the set of colorings of
weight i and then combine these for all i to deduce the result.
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Polya Enumeration Theorem

On a graph with 4 vertices, we have

F (t) = ZG (1 + t, 1 + t2, 1 + t3, 1 + t4)

=
1

24
((1 + t)6 + 9(1 + t)2(1 + t2)2 + 8(1 + t3)2 + 6(1 + t2)(1 + t4))

= t6 + t5 + 2t4 + 3t3 + 2t2 + t + 1.

one graph (K4) with 6 edges, one (distinct) graph with 5 edges, 2
graphs with 4 edges, 3 graphs with 3 edges, 2 graphs with 2 edges, 1
graph with 1 edge, and 1 graph with no edges.
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Polya Enumeration Theorem

Generating Function for a set of colors (multivariate)

Suppose that each color now has multiple weights w1(c),w2(c), . . . . The
new generating function f (t1, t2, . . . ) for the set of colors is

f (t1, t2, . . . ) =
∑

m1,m2,···∈Z+
0

fm1,m2,...t
m1
1 tm2

2 . . . ,

where fm1,m2,... is the number of colors with first weight w1(c) = m1,
second weight w2(c) = m2, etc.

Polya Enumeration Theorem (multiweighted)

Given a set of colors with multiple weights, a set X , and a permutation
group G on X , the generating function of the number of colored
arrangements is given by

F (t1, t2, . . . ) = ZG (f (t1, t2, . . . ), f (t2
1 , t

2
2 , . . . ), . . . ).
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