Polya Enumeration Theorem

Sebastian Zhu, Vincent Fan
MIT PRIMES
December 7th, 2018

Groups

Definition (Group)

A group is a set G together with a binary operation • such that the following axioms hold:

- $a \cdot b \in G$ for all $a, b \in G$ (closure)
- $a \cdot(b \cdot c)=(a \cdot b) \cdot c$ for all $a, b, c \in G$ (associativity)
- $\exists e \in G$ such that for all $a \in G, a \cdot e=e \cdot a=a$ (identity)
- for each $a \in G, \exists a^{-1} \in G$ such that $a \cdot a^{-1}=a^{-1} \cdot a=e$ (inverse)

Groups

Definition (Group)

A group is a set G together with a binary operation • such that the following axioms hold:

- $a \cdot b \in G$ for all $a, b \in G$ (closure)
- $a \cdot(b \cdot c)=(a \cdot b) \cdot c$ for all $a, b, c \in G$ (associativity)
- $\exists e \in G$ such that for all $a \in G, a \cdot e=e \cdot a=a$ (identity)
- for each $a \in G, \exists a^{-1} \in G$ such that $a \cdot a^{-1}=a^{-1} \cdot a=e$ (inverse)
- Usually $a \cdot b$ is written simply as $a b$.

Groups

Definition (Group)

A group is a set G together with a binary operation • such that the following axioms hold:

- $a \cdot b \in G$ for all $a, b \in G$ (closure)
- $a \cdot(b \cdot c)=(a \cdot b) \cdot c$ for all $a, b, c \in G$ (associativity)
- $\exists e \in G$ such that for all $a \in G, a \cdot e=e \cdot a=a$ (identity)
- for each $a \in G, \exists a^{-1} \in G$ such that $a \cdot a^{-1}=a^{-1} \cdot a=e$ (inverse)
- Usually $a \cdot b$ is written simply as $a b$.
- In particular they can be functions under function composition

Groups

Definition (Group)

A group is a set G together with a binary operation • such that the following axioms hold:

- $a \cdot b \in G$ for all $a, b \in G$ (closure)
- $a \cdot(b \cdot c)=(a \cdot b) \cdot c$ for all $a, b, c \in G$ (associativity)
- $\exists e \in G$ such that for all $a \in G, a \cdot e=e \cdot a=a$ (identity)
- for each $a \in G, \exists a^{-1} \in G$ such that $a \cdot a^{-1}=a^{-1} \cdot a=e$ (inverse)
- Usually $a \cdot b$ is written simply as $a b$.
- In particular they can be functions under function composition
- group in which every element equals power of a single element is called a cylic group

Groups

Definition (Group)

A group is a set G together with a binary operation • such that the following axioms hold:

- $a \cdot b \in G$ for all $a, b \in G$ (closure)
- $a \cdot(b \cdot c)=(a \cdot b) \cdot c$ for all $a, b, c \in G$ (associativity)
- $\exists e \in G$ such that for all $a \in G, a \cdot e=e \cdot a=a$ (identity)
- for each $a \in G, \exists a^{-1} \in G$ such that $a \cdot a^{-1}=a^{-1} \cdot a=e$ (inverse)
- Usually $a \cdot b$ is written simply as $a b$.
- In particular they can be functions under function composition
- group in which every element equals power of a single element is called a cylic group
- Ex. \mathbb{Z} is a group under normal addition. The identity is 0 and the inverse of a is $-a$. Group is cyclic with generator 1

Group Actions

Definition (Group Action)

Given a set X and a group G, a group action is a function $\phi: G \times X \rightarrow X$ satisfying the following axioms:

- $\phi(e, x)=x$ (identity)
- $\phi(g, \phi(h, x))=\phi(g h, x)$ (compatibility/associativity)

Group Actions

Definition (Group Action)

Given a set X and a group G, a group action is a function $\phi: G \times X \rightarrow X$ satisfying the following axioms:

- $\phi(e, x)=x$ (identity)
- $\phi(g, \phi(h, x))=\phi(g h, x)$ (compatibility/associativity)
- Confusingly, $\phi(g, x)$ is usually abbreviated as $g \cdot x$ or $g x$, which is the same notation as for group elements.

Group Actions

Definition (Group Action)

Given a set X and a group G, a group action is a function $\phi: G \times X \rightarrow X$ satisfying the following axioms:

- $\phi(e, x)=x$ (identity)
- $\phi(g, \phi(h, x))=\phi(g h, x)$ (compatibility/associativity)
- Confusingly, $\phi(g, x)$ is usually abbreviated as $g \cdot x$ or $g x$, which is the same notation as for group elements.
- A group G acting on a set X is written $G \curvearrowright X$.

Group Actions

Definition (Group Action)

Given a set X and a group G, a group action is a function $\phi: G \times X \rightarrow X$ satisfying the following axioms:

- $\phi(e, x)=x$ (identity)
- $\phi(g, \phi(h, x))=\phi(g h, x)$ (compatibility/associativity)
- Confusingly, $\phi(g, x)$ is usually abbreviated as $g \cdot x$ or $g x$, which is the same notation as for group elements.
- A group G acting on a set X is written $G \curvearrowright X$.
- In some cases the action of G on X is fairly obvious. Ex. If $G=S_{n}$ acts on $X=\{1,2, \ldots, n\}$ then the action is seen to be permutations on n elements.

Orbits

Definition (Orbit)

Let G be a group acting on X. The orbit of $x \in X$ is the set $\{g x \mid g \in G\}$. In other words, the orbit of x is the set of elements of X which can be obtained by composing x with various elements of G.

Orbits

Definition (Orbit)

Let G be a group acting on X. The orbit of $x \in X$ is the set $\{g x \mid g \in G\}$. In other words, the orbit of x is the set of elements of X which can be obtained by composing x with various elements of G.

- orbit of x denoted $\operatorname{Orb}_{G}(x)$

Orbits

Definition (Orbit)

Let G be a group acting on X. The orbit of $x \in X$ is the set $\{g x \mid g \in G\}$. In other words, the orbit of x is the set of elements of X which can be obtained by composing x with various elements of G.

- orbit of x denoted $\operatorname{Orb}_{G}(x)$
- orbits of X under the action of G form a partition of X

Orbits

Definition (Orbit)

Let G be a group acting on X. The orbit of $x \in X$ is the set $\{g x \mid g \in G\}$. In other words, the orbit of x is the set of elements of X which can be obtained by composing x with various elements of G.

- orbit of x denoted $\operatorname{Orb}_{G}(x)$
- orbits of X under the action of G form a partition of X
- Ex. Under the trivial action $g x=x$, the orbit of any element is itself in a set

Orbits

Definition (Orbit)

Let G be a group acting on X. The orbit of $x \in X$ is the set $\{g x \mid g \in G\}$. In other words, the orbit of x is the set of elements of X which can be obtained by composing x with various elements of G.

- orbit of x denoted $\operatorname{Orb}_{G}(x)$
- orbits of X under the action of G form a partition of X
- Ex. Under the trivial action $g x=x$, the orbit of any element is itself in a set
- Ex. Under the permutation action $G=S_{n}$ and $X=\{1,2, \ldots, n\}$, the only orbit is the entire set

Orbits

Definition (Orbit)

Let G be a group acting on X. The orbit of $x \in X$ is the set $\{g x \mid g \in G\}$. In other words, the orbit of x is the set of elements of X which can be obtained by composing x with various elements of G.

- orbit of x denoted $\operatorname{Orb}_{G}(x)$
- orbits of X under the action of G form a partition of X
- Ex. Under the trivial action $g x=x$, the orbit of any element is itself in a set
- Ex. Under the permutation action $G=S_{n}$ and $X=\{1,2, \ldots, n\}$, the only orbit is the entire set
- Set of orbits of X under the action of G is denoted X / G, the quotient of the action

Burnside's Lemma

Burnside's Lemma

Suppose $G \curvearrowright X$, and let $X^{g}=\{x \in X \mid g x=x\}$. In other words, X^{g} represents the set of elements in X fixed by g. Then

$$
|X / G|=\frac{1}{|G|} \sum_{g \in G}\left|X^{g}\right| .
$$

Burnside's Lemma

Burnside's Lemma

Suppose $G \curvearrowright X$, and let $X^{g}=\{x \in X \mid g x=x\}$. In other words, X^{g} represents the set of elements in X fixed by g. Then

$$
|X / G|=\frac{1}{|G|} \sum_{g \in G}\left|X^{g}\right| .
$$

- This gives a formula for the number of orbits of X under the action of G

Burnside's Lemma

Burnside's Lemma

Suppose $G \curvearrowright X$, and let $X^{g}=\{x \in X \mid g x=x\}$. In other words, X^{g} represents the set of elements in X fixed by g. Then

$$
|X / G|=\frac{1}{|G|} \sum_{g \in G}\left|X^{g}\right|
$$

- This gives a formula for the number of orbits of X under the action of G
- $|X / G|$ represents the number of "distinct elements" of X under the action of G

Application of Burnside

Consider distinct rings of 8 beads colored with 4 colors, up to rotation.

Application of Burnside

Consider distinct rings of 8 beads colored with 4 colors, up to rotation. Define a group action $G \curvearrowright X$ so that $g x$ is the rotation of the ring x by the element g.

Application of Burnside

Consider distinct rings of 8 beads colored with 4 colors, up to rotation. Define a group action $G \curvearrowright X$ so that $g x$ is the rotation of the ring x by the element g.
The orbits of this action represent distinct rings under rotation.

Application of Burnside

Consider distinct rings of 8 beads colored with 4 colors, up to rotation. Define a group action $G \curvearrowright X$ so that $g x$ is the rotation of the ring x by the element g.
The orbits of this action represent distinct rings under rotation. We must therefore count $|X / G|$. By Burnside's Lemma we find the numbers of elements of X fixed by each $g \in G$.

Application of Burnside

Consider distinct rings of 8 beads colored with 4 colors, up to rotation. Define a group action $G \curvearrowright X$ so that $g x$ is the rotation of the ring x by the element g.
The orbits of this action represent distinct rings under rotation.
We must therefore count $|X / G|$. By Burnside's Lemma we find the numbers of elements of X fixed by each $g \in G$.
The result is

$$
|X / G|=\frac{1}{|G|} \sum_{g \in G}\left|X^{g}\right|=\frac{1}{8}(4096+4+16+4+256+4+16+4)=550
$$

Polya Enumeration Theorem

Polya Enumeration Theorem (Unweighted)

Let X be a set with group action induced by a permutation group G on X. Let C be a set of colors on X, and let C^{X} be the set of functions $f: X \rightarrow C$. Then

$$
\left|C^{X} / G\right|=\frac{1}{|G|} \sum_{g \in G}|C|^{c(g)}
$$

where $c(g)$ is the number of cycles of g on X.

Polya Enumeration Theorem

Polya Enumeration Theorem (Unweighted)

Let X be a set with group action induced by a permutation group G on X. Let C be a set of colors on X, and let C^{X} be the set of functions $f: X \rightarrow C$. Then

$$
\left|C^{X} / G\right|=\frac{1}{|G|} \sum_{g \in G}|C|^{c(g)}
$$

where $c(g)$ is the number of cycles of g on X.

- the functions $f: X \rightarrow C$ is really an assignment of colors to the elements of X.

Polya Enumeration Theorem

Polya Enumeration Theorem (Unweighted)

Let X be a set with group action induced by a permutation group G on X. Let C be a set of colors on X, and let C^{X} be the set of functions $f: X \rightarrow C$. Then

$$
\left|C^{X} / G\right|=\frac{1}{|G|} \sum_{g \in G}|C|^{c(g)}
$$

where $c(g)$ is the number of cycles of g on X.

- the functions $f: X \rightarrow C$ is really an assignment of colors to the elements of X.
- G must act on C^{X} to make sense; if q is a coloring and $g \in G$ then $g \cdot q(x)=q\left(g^{-1} x\right)$

Polya Enumeration Theorem

Polya Enumeration Theorem (Unweighted)

Let X be a set with group action induced by a permutation group G on X. Let C be a set of colors on X, and let C^{X} be the set of functions $f: X \rightarrow C$. Then

$$
\left|C^{X} / G\right|=\frac{1}{|G|} \sum_{g \in G}|C|^{c(g)}
$$

where $c(g)$ is the number of cycles of g on X.

- the functions $f: X \rightarrow C$ is really an assignment of colors to the elements of X.
- G must act on C^{X} to make sense; if q is a coloring and $g \in G$ then $g \cdot q(x)=q\left(g^{-1} x\right)$
- This is equivalent to Burnside's lemma because $|C|^{c(g)}$ also counts the number of points fixed by g. To be fixed, each element in a cycle has to have the same color.

Polya Enumeration Theorem

Problem

Count the number of graphs of 4 vertices up to isomorphism.

Polya Enumeration Theorem

Problem

Count the number of graphs of 4 vertices up to isomorphism.

- Can be done by brute force; however we present a different way to solve the problem

Polya Enumeration Theorem

Problem

Count the number of graphs of 4 vertices up to isomorphism.

- Can be done by brute force; however we present a different way to solve the problem
- can be visualized by colorings 2 -element subsets of $\{1,2,3,4\}$, colored black if edge and white if no edge

Polya Enumeration Theorem

Problem

Count the number of graphs of 4 vertices up to isomorphism.

- Can be done by brute force; however we present a different way to solve the problem
- can be visualized by colorings 2 -element subsets of $\{1,2,3,4\}$, colored black if edge and white if no edge

Definition (Weight)

Suppose that the colors $c \in C$ have weights $w(c) \in \mathbb{Z}_{0}^{+}$. Define the weight of a coloring q to be the sum of the weights of the colors used, or

$$
w(q)=\sum_{x \in X} w(q(x))
$$

Polya Enumeration Theorem

Problem

Count the number of graphs of 4 vertices up to isomorphism.

- Can be done by brute force; however we present a different way to solve the problem
- can be visualized by colorings 2-element subsets of $\{1,2,3,4\}$, colored black if edge and white if no edge

Definition (Weight)

Suppose that the colors $c \in C$ have weights $w(c) \in \mathbb{Z}_{0}^{+}$. Define the weight of a coloring q to be the sum of the weights of the colors used, or

$$
w(q)=\sum_{x \in X} w(q(x))
$$

- weight of a coloring corresponds to number of edges; important for construction of generating function on colorings

Polya Enumeration Theorem

Definition (Cycle Index)

The cycle index of a permutation group G is defined as

$$
Z_{G}\left(t_{1}, t_{2}, \ldots\right)=\frac{1}{|G|} \sum_{g \in G} t_{1}^{m_{1}(g)} t_{2}^{m_{2}(g)} \ldots
$$

where $m_{i}(g)$ is the number of cycles of length i in the cycle decomposition of g.

The group that acts on graphs with 6 edges is S_{4}. By inspection, there is 1 element of S_{4} with 6 cycles of length 1,9 elements with 2 one cycles and 2 two cycles, 8 elements with 23 cycles, and six elements with a two cycle and a four cycle. Therefore

$$
Z_{S_{4}}\left(t_{1}, t_{2}, t_{3}, t_{4}\right)=\frac{1}{24}\left(t_{1}^{6}+9 t_{1}^{2} t_{2}^{2}+8 t_{3}^{2}+6 t_{2} t_{4}\right)
$$

Polya Enumeration Theorem

Generating Function for a set of colors

The generating function for a set of colors is

$$
f(t)=f_{0}+f_{1} t+f_{2} t^{2}+\ldots,
$$

where f_{i} is the number of colors with weight i.
The generating function in the graph counting problem is therefore $1+t$.

Polya Enumeration Theorem

Polya Enumeration Theorem (weighted)

The generating function of the number of colored arrangements by weight is given by

$$
F(t)=Z_{G}\left(f(t), f\left(t^{2}\right), \ldots\right) .
$$

Justification: we can show that

$$
\sum_{\text {gs fixed by } g} t^{w(q)}=\prod_{i} f\left(t^{i}\right)^{m_{i}(g)}
$$

We can then show that summing the above quantity across all $g \in G$ (and dividing by $|G|)$ is the same as $F(t)=Z_{G}\left(f(t), f\left(t^{2}\right), \ldots\right)$ through some easy but laborious bashing. Apply Burnside's on the set of colorings of weight i and then combine these for all i to deduce the result.

Polya Enumeration Theorem

On a graph with 4 vertices, we have

$$
\begin{aligned}
F(t) & =Z_{G}\left(1+t, 1+t^{2}, 1+t^{3}, 1+t^{4}\right) \\
& =\frac{1}{24}\left((1+t)^{6}+9(1+t)^{2}\left(1+t^{2}\right)^{2}+8\left(1+t^{3}\right)^{2}+6\left(1+t^{2}\right)\left(1+t^{4}\right)\right) \\
& =t^{6}+t^{5}+2 t^{4}+3 t^{3}+2 t^{2}+t+1
\end{aligned}
$$

Polya Enumeration Theorem

On a graph with 4 vertices，we have

$$
\begin{aligned}
F(t) & =Z_{G}\left(1+t, 1+t^{2}, 1+t^{3}, 1+t^{4}\right) \\
& =\frac{1}{24}\left((1+t)^{6}+9(1+t)^{2}\left(1+t^{2}\right)^{2}+8\left(1+t^{3}\right)^{2}+6\left(1+t^{2}\right)\left(1+t^{4}\right)\right) \\
& =t^{6}+t^{5}+2 t^{4}+3 t^{3}+2 t^{2}+t+1
\end{aligned}
$$

－one graph $\left(K_{4}\right)$ with 6 edges，one（distinct）graph with 5 edges， 2 graphs with 4 edges， 3 graphs with 3 edges， 2 graphs with 2 edges， 1 graph with 1 edge，and 1 graph with no edges．
$\because \rightarrow \infty$
ニハロ
$\%$

Polya Enumeration Theorem

Generating Function for a set of colors (multivariate)

Suppose that each color now has multiple weights $w_{1}(c), w_{2}(c), \ldots$ The new generating function $f\left(t_{1}, t_{2}, \ldots\right)$ for the set of colors is

$$
f\left(t_{1}, t_{2}, \ldots\right)=\sum_{m_{1}, m_{2}, \cdots \in \mathbb{Z}_{0}^{+}} f_{m_{1}, m_{2}, \ldots} t_{1}^{m_{1}} t_{2}^{m_{2}} \ldots,
$$

where $f_{m_{1}, m_{2}}, \ldots$ is the number of colors with first weight $w_{1}(c)=m_{1}$, second weight $w_{2}(c)=m_{2}$, etc.

Polya Enumeration Theorem

Generating Function for a set of colors (multivariate)

Suppose that each color now has multiple weights $w_{1}(c), w_{2}(c), \ldots$ The new generating function $f\left(t_{1}, t_{2}, \ldots\right)$ for the set of colors is

$$
f\left(t_{1}, t_{2}, \ldots\right)=\sum_{m_{1}, m_{2}, \cdots \in \mathbb{Z}_{0}^{+}} f_{m_{1}, m_{2}, \ldots} t_{1}^{m_{1}} t_{2}^{m_{2}} \ldots
$$

where $f_{m_{1}, m_{2}, \ldots}$ is the number of colors with first weight $w_{1}(c)=m_{1}$, second weight $w_{2}(c)=m_{2}$, etc.

Polya Enumeration Theorem (multiweighted)

Given a set of colors with multiple weights, a set X, and a permutation group G on X, the generating function of the number of colored arrangements is given by

$$
F\left(t_{1}, t_{2}, \ldots\right)=Z_{G}\left(f\left(t_{1}, t_{2}, \ldots\right), f\left(t_{1}^{2}, t_{2}^{2}, \ldots\right), \ldots\right)
$$

Acknowledgements

We would like to thank following people for their contributions toward our project.

- Chris Ryba, our awesome mentor!

Acknowledgements

We would like to thank following people for their contributions toward our project.

- Chris Ryba, our awesome mentor!
- Dr. Gerovitch and those who helped to organize this event

Acknowledgements

We would like to thank following people for their contributions toward our project.

- Chris Ryba, our awesome mentor!
- Dr. Gerovitch and those who helped to organize this event
- Our parents for their support and for driving us to MIT every weekend

Acknowledgements

We would like to thank following people for their contributions toward our project.

- Chris Ryba, our awesome mentor!
- Dr. Gerovitch and those who helped to organize this event
- Our parents for their support and for driving us to MIT every weekend
- Everyone who came and listened to our presentation

Acknowledgements

We would like to thank following people for their contributions toward our project.

- Chris Ryba, our awesome mentor!
- Dr. Gerovitch and those who helped to organize this event
- Our parents for their support and for driving us to MIT every weekend
- Everyone who came and listened to our presentation
- Thanks everyone!

